General

The relay-based VXI-RMR410 coaxial microwave switching module provides a flexible high density configuration for many applic ations. It c onta ins multiple 18 GHz relay sections for use in ATE sta tions, communic ation sites or other demanding applications requiring compact high performance mic rowave switching.

It provides up to four 1×10 individual relay sections within a single C2 sized VXI module. Each relay element is individually shielded from each other and the intemal control/status circuitry. A unique control driver method reduces the a mount of power the module requires from the host VXI mainframe, reducing cooling requirements and increasing reliability.

Ultra-high reliability relay elements ($>1,000,000$ operations) are coupled with control and status circuitry. Sections can be field replaced without special tools since each section is connectorized.

The number of sections included is determined by the model number. A reduced configuration can be further populated while in the field. Additional configurations are available on special order.

Applications

Antenna routing

- ATE systems
- Communication installations
- Switching high speed ECL/PECL data
- Satellite control centers
- Ground station IF signal routing

Features

- Fast register-based control
- High relia bility relay elements
- DC to 18 GHz bandpass (min)
- High performance stainless steel SMA signal connectors
- Field replaceable plug-in relay elements
- Rugged aluminum shielded C2 sized enclosure
- Built-in control and status circuitry
- Individually shielded sections
- LabVIEW drivers included

Configurations

■ VXI-RMR410-001 Single 1×10

- VXI-RMR410-002 Dual 1×10

■ VXI-RMR410-003 . . . Triple 1×10

- VXI-RMR410-004Quad 1×10

Construction

The diagram below shows the overall physic al configuration of the VXI-RMR410 module. The top and bottom of the module conta ins venting slots for flow through cooling for proper operation in extreme temperature environments. The rugged aluminum enclosure provides a shielded environment internally for low noise signals. The module also provides aluminum slides for additional grounding for host VXI mainframes that provide conductive module slides.

Ea sily accessible during installation, the module has both the Logical Address and IRQ/function DIP-switches located on the side of the module (detailed below). Also located on the side is a set of status LED to indic ate various module functions during troubleshooting.

The module faceplate provides two additional status LED's. A red LED is labeled ERR to indicate error conditions, and a blue LED illuminates when the module is addressed by the VXI slot 0 controller.

Module control is register based providing fast easy control of the module's functions. LabVIEW drivers can be provided to simplify the control of the module.

Example Module Usage

Many different a pplicationscan be served by the VXI-RMR72 VXI switch module. The module provides a versatile building block for both 1xN type switching and XY matrix switc hing, or both.

Universal Switching Corporation builds systems utilizing this and other modules to meet customer applic ations. The diagram on page 3 illustrates how the four individual sections can be cascaded to provide a larger configuration.

The example shows a $37 x 1$ bidirectional array allowing the selection of one signal of 37 to be routed to the single output. Many other possibilities can be realized when coupled with other VXI switching modules too. Interconnection cabling can be provided by the factory using high performance 30 GHz semi-flex cabling insuring the best possible performance.

37x1 Switching Array Diagram

Signal Specifications	
Switching elements	.Relay-based
Operating mode	.Normally Open
Configuration	. One 1x10, up to Four 1×10
Signal type	.Analog, bi-directional
Signal connector	.Sta inless steel female SMA
Frequency range	.DC - 18G Hz (min)
Impedance	. 50 ohm
Insertion loss	. 40.30 dB @ 4G Hz
	40.35 dB @ 8G Hz
	$<0.40 \mathrm{~dB}$ @ 12GHz
	$<0.50 \mathrm{~dB}$ @ 18G Hz
Repeatability	. 40.10 dB max
Crosstalk isolation (min)	.$>75 \mathrm{~dB}$ @ 4G Hz
	>70dB @ 8G Hz
	>65dB @ 12GHz
	>60dB @ 18G Hz
VSWR	. <1.2: 1 @ 4G Hz
	<1.3: 1 @ 8GHz
	<1.4:1@12G Hz
	<1.5 : 1 @ 18G Hz
Maximum power	. 100 watts @ 2.5 G Hz
	40 watts @ 18GHz
Switching speed	.$<50 \mathrm{mS}$ (plus control time)

General Specifications

Module sizeQuad (C2)
Control type Register based (V1.4)
Sparing Field replaceable elements
ConstructionShielded aluminum case
Mating SMA torque 8 inch pounds MAX
DC power +5 V @ 1 A plus 125 mA /closure $+12 \mathrm{~V} @ 310 \mathrm{~mA}$ (50mS duration)
Weight $<$ 3lbs
Operating temp 0 to +70 C
Non-operating temp -20 to +85 C
Humidity 0 to 95\% (NC @ +25C)
Contact life $>1,000,000$ operations (per port)
MTBF $>75,000$ hours
(per MIL-HDBK-217F, N1
ground benign @ +25C)

